5,497 research outputs found

    Origins of elastic properties in ordered nanocomposites

    Get PDF
    We predict a diblock copolymer melt in the lamellar phase with added spherical nanoparticles that have an affinity for one block to have a lower tensile modulus than a pure diblock copolymer system. This weakening is due to the swelling of the lamellar domain by nanoparticles and the displacement of polymer by elastically inert fillers. Despite the overall decrease in the tensile modulus of a polydomain sample, the shear modulus for a single domain increases dramatically

    Models for energy and charge transport and storage in biomolecules

    Full text link
    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.Comment: 12 pages (latex), 12 figures (ps

    Architectural Engineering Approach to Developing a Matrix for Planning in Extreme Environments

    Get PDF
    Extreme environments on Earth share similar facilities and operations, design and planning challenges. Each environment presents special lessons regarding housing design, crew/staff operations and training, and equipment and logistical requirements for human activities. The paper discusses these challenges and lessons. Recurrent and specific to environment and conditions events are outlined and categorized based on case studies reviews and literature summary. Understanding of relationships and influences between different facets of human society and architecture can help to find a design approach which would optimize needs and requirements for various types of people living in different environments, societies and cultures. Environmental conditions affecting architectural requirements include form developing factors, site orientation and circulation, and budget considerations. They have to be addressed at the programming design stage in order to avoid costly adjustments at later development stages. It is even more critical in case of designing for challenging environments

    Extreme events in discrete nonlinear lattices

    Full text link
    We perform statistical analysis on discrete nonlinear waves generated though modulational instability in the context of the Salerno model that interpolates between the intergable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrodinger (DNLS) equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.Comment: 5 pages, 4 figures; reference added, figure 2 correcte

    Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling

    Get PDF
    The thermal bipolar ocean seesaw hypothesis was advanced by Stocker and Johnsen (2003) as the ‘simplest possible thermodynamic model’ to explain the time relationship between Dansgaard–Oeschger (DO) and Antarctic Isotope Maxima (AIM) events. In this review we combine palaeoclimate observations, theory and general circulation model experiments to advance from the conceptual model toward a process understanding of interhemispheric coupling and the forcing of AIM events. We present four main results: (1) Changes in Atlantic heat transport invoked by the thermal seesaw are partially compensated by opposing changes in heat transport by the global atmosphere and Pacific Ocean. This compensation is an integral part of interhemispheric coupling, with a major influence on the global pattern of climate anomalies. (2) We support the role of a heat reservoir in interhemispheric coupling but argue that its location is the global interior ocean to the north of the Antarctic Circumpolar Current (ACC), not the commonly assumed Southern Ocean. (3) Energy budget analysis indicates that the process driving Antarctic warming during AIM events is an increase in poleward atmospheric heat and moisture transport following sea ice retreat and surface warming over the Southern Ocean. (4) The Antarctic sea ice retreat is itself driven by eddy-heat fluxes across the ACC, amplified by sea-ice–albedo feedbacks. The lag of Antarctic warming after AMOC collapse reflects the time required for heat to accumulate in the ocean interior north of the ACC (predominantly the upper 1500 m), before it can be mixed across this dynamic barrier by eddies

    Electron Bernstein waves emission in the TJ-II Stellarator

    Full text link
    Taking advantage of the electron Bernstein waves heating (EBWH) system of the TJ-II stellarator, an electron Bernstein emission (EBE) diagnostic was installed. Its purpose is to investigate the B-X-O radiation properties in the zone where optimum theoretical EBW coupling is predicted. An internal movable mirror shared by both systems allows us to collect the EBE radiation along the same line of sight that is used for EBW heating. The theoretical EBE has been calculated for different orientations of the internal mirror using the TRUBA code as ray tracer. A comparison with experimental data obtained in NBI discharges is carried out. The results provide a valuable information regarding the experimental O-X mode conversion window expected in the EBW heating experiments. Furthermore, the characterization of the radiation polarization shows evidence of the underlying B-X-O conversion process.Comment: 21 pages, 14 figure
    corecore